Multiple positive solutions to singular boundary value problems for superlinear second order FDEs
نویسندگان
چکیده
منابع مشابه
Positive Solutions for Second-Order Singular Semipositone Boundary Value Problems
which arises in many different areas of applied mathematics and physics. Singular problems of this type that the nonlinearity g may change sign are referred to as singular semipositone problems in the literature. Motivated by BVP (1.1), this paper presents the existence results of the following second-order singular semipositone boundary value problem: { u ′′ + f(t, u) + g(t, u) = 0, 0 < t < 1,...
متن کاملPositive Solutions to a Singular Second Order Boundary Value Problem
In this paper, we establish some criteria for the existence of positive solutions for certain two point boundary value problems for the singular nonlinear second order equation −(ru ) + qu = λf (t, u ) on a time scale T. As a special case when T = R, our results include those of Erbe and Mathsen [11]. Our results are new in a general time scale setting and can be applied to difference and q-dif...
متن کاملGLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR SUPERLINEAR SECOND ORDER m-POINT BOUNDARY VALUE PROBLEMS
In this paper, we consider the nonlinear eigenvalue problems u′′ + λh(t)f(u) = 0, 0 < t < 1, u(0) = 0, u(1) = m−2 X
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملPositive Solutions of Singular Fourth-order Boundary-value Problems
In this paper, we present necessary and sufficient conditions for the existence of positive C3[0, 1]∩C4(0, 1) solutions for the singular boundaryvalue problem x′′′′(t) = p(t)f(x(t)), t ∈ (0, 1); x(0) = x(1) = x′(0) = x′(1) = 0, where f(x) is either superlinear or sublinear, p : (0, 1) → [0,+∞) may be singular at both ends t = 0 and t = 1. For this goal, we use fixed-point index results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2000
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-75-3-257-270